"МУ 2.6.1.1981-05. 2.6.1. Ионизирующее излучение, радиационная безопасность. Радиационный контроль и гигиеническая оценка источников питьевого водоснабжения и питьевой воды по показателям радиационной безопасности. Оптимизация защитных мероприятий источни

Посмотреть комментарии и ближайшие изменения к документу.
Ссылка откроется в вашей учетной записи. Если у вас еще нет доступа в систему, вы сможете бесплатно оформить его на 2 дня.

Утверждаю

Руководитель Федеральной

службы по надзору в сфере

защиты прав потребителей

и благополучия человека,

Главный государственный

санитарный врач

Российской Федерации

Г.Г.ОНИЩЕНКО

25 апреля 2005 года

Дата введения -

1 июня 2005 года

2.6.1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

РАДИАЦИОННЫЙ КОНТРОЛЬ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА

ИСТОЧНИКОВ ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ И ПИТЬЕВОЙ ВОДЫ

ПО ПОКАЗАТЕЛЯМ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ. ОПТИМИЗАЦИЯ

ЗАЩИТНЫХ МЕРОПРИЯТИЙ ИСТОЧНИКОВ ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ РАДИОНУКЛИДОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МУ 2.6.1.1981-05

Предисловие

1. Разработаны: ФГУЗ "Федеральный центр гигиены и эпидемиологии" Роспотребнадзора; Российской медицинской академией последипломного образования; ФГУН Санкт-Петербургский НИИ радиационной гигиены; Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека; ФГУП ВИМС; ЗАО НПП "ДОЗА"; ГУ НИИ ЭЧ и ГОС им. А.Н. Сысина; территориальным управлением Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по г. Санкт-Петербургу; ФГУЗ "Центр гигиены и эпидемиологии" в Орловской области.

2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию (протокол N 1 от 31 марта 2005 г.).

3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 25 апреля 2005 г.

4. Введены в действие с 1 июня 2005 г.

5. Введены впервые.

1. Область применения

1.1. Настоящие Методические указания (МУ) распространяются на проведение радиационного контроля, включая производственный контроль, и гигиенической оценки по показателям радиационной безопасности источников питьевого водоснабжения и питьевой воды, подаваемой системами водоснабжения, либо находящейся в емкостях, либо бутилированной питьевой воды, включая минеральную природную столовую, кроме лечебно-столовой и лечебной минеральной воды.

1.2. Методические указания предназначены для индивидуальных предпринимателей и юридических лиц, деятельность которых связана с обеспечением населения питьевой водой, а также для специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, осуществляющих государственный санитарно-эпидемиологический надзор.

2. Нормативные ссылки

2.1. Федеральный закон от 30 марта 1999 г. N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения".

2.2. Федеральный закон от 9 января 1996 г. N 3-ФЗ "О радиационной безопасности населения".

2.3. Санитарные правила и нормативы СанПиН 2.6.1.2523-09. Нормы радиационной безопасности (НРБ-99/2009).

2.4. СП 2.6.1.799-99. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99).

2.5. СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.

2.6. СанПиН 2.3.2.1078-01. Гигиенические требования безопасности и пищевой ценности пищевых продуктов.

2.7. СанПиН 2.1.4.1116-02. Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества.

2.8. СП 2.6.1.1292-03. Гигиенические требования по ограничению облучения населения за счет природных источников ионизирующего излучения.

3. Термины и определения

В настоящих рекомендациях принята терминология в соответствии с НРБ-99 и ОСПОРБ-99. В дополнение к ним используются следующие термины.

Абсолютная неопределенность измерения - неопределенность измерения, выраженная в единицах измеряемой величины.

Бутилированная питьевая вода - питьевая вода, помещенная в бутыли, контейнеры, пакеты и т.п.

Водопотребитель - физическое или юридическое лицо, получающее в установленном порядке питьевую воду для обеспечения своих нужд.

Источник питьевого водоснабжения - поверхностный или подземный водный объект (или его часть), вода которого отвечает установленным показателям качества и используется или может быть использована для забора в качестве питьевой воды.

Минимальная измеряемая активность (удельная активность) - активность (удельная активность) реперного радионуклида в счетном образце, при измерении которой на данной радиометрической установке за время экспозиции один час относительная случайная (статистическая) неопределенность результата измерений составляет 50% при доверительной вероятности Р = 0,95.

Нецентрализованная система питьевого водоснабжения - комплекс сооружений и устройств, предназначенных для забора и подготовки (или без нее) питьевой воды без подачи ее к местам потребления, и открытый для общего пользования.

Нормативы качества питьевой воды - показатели органолептических свойств, показатели предельно допустимого содержания химических веществ и микроорганизмов, уровни вмешательства содержания радионуклидов в питьевой воде, гарантирующие ее безопасность для человека независимо от продолжительности использования.

Нормативы качества воды источников питьевого водоснабжения - показатели органолептических свойств воды, предельно допустимых концентраций в ней химических, биологических веществ, микроорганизмов, содержания природных и искусственных радионуклидов, характеризующие пригодность ее использования после соответствующей подготовки (или без нее) для питьевого водоснабжения населения.

Организация, эксплуатирующая системы питьевого водоснабжения, - организация, осуществляющая подготовку и отпуск питьевой воды.

Питьевая вода - природная вода или вода после обработки, подаваемая через системы водоснабжения либо находящаяся в емкостях, либо бутилированная вода, предназначенная для удовлетворения питьевых и иных бытовых нужд человека либо для производства пищевой продукции, предназначенной для ее потребления человеком.

Питьевое водоснабжение - деятельность по обеспечению водопотребителей питьевой водой, связанная с выбором и охраной источников питьевого водоснабжения, забором, подготовкой, хранением, расфасовкой и подачей питьевой воды к местам ее расходования или реализации и осуществляемая посредством размещения, проектирования, строительства, эксплуатации и реконструкции систем питьевого водоснабжения и объектов по производству бутилированной питьевой воды.

Повышенные уровни содержания природных радионуклидов (в рамках данного документа) - удельные активности природных радионуклидов, превышающие уровни вмешательства (УВ), приведенные в приложении 2а к НРБ-99/2009.

Подготовка питьевой воды - технологический процесс обработки воды для приведения ее состояния в соответствие с установленными нормативами качества питьевой воды.

Радиометрическая установка - средство радиометр, спектрометр) для измерения активности (удельной активности) радионуклидов или потока ионизирующих частиц.

Система питьевого водоснабжения (в рамках настоящих МУ) - централизованные и нецентрализованные системы питьевого водоснабжения, домовые распределительные системы, системы питьевого водоснабжения на транспортных средствах и т.д.

Систематическая неопределенность измерения - составляющая неопределенности измерения, включает в себя погрешность средства измерений и метода измерений.

Случайная (статистическая) неопределенность измерения - составляющая неопределенности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.

Суммарная активность альфа-излучающих радионуклидов (далее - суммарная или общая альфа-активность воды):

В рамках данного документа применительно к упрощенной системе анализа:

суммарная (общая) альфа- или бета-активность воды - условная альфа- или бета-активность счетного образца, полученного из контролируемой пробы с помощью регламентированной методики пробоподготовки, численно равная активности назначенного образца сравнения при одинаковых показаниях используемого радиометра;

счетный образец - определенное количество вещества, полученное из точечной или объединенной пробы согласно установленной методике и предназначенное для измерений его параметров на радиометрической установке в соответствии с регламентированной методикой выполнения измерений;

централизованная система питьевого водоснабжения - комплекс сооружений и устройств, предназначенных для забора, подготовки (или без нее), хранения и подачи питьевой воды к местам ее распределения и расходования, и открытый для общего пользования;

неопределенность измерения - параметр, используемый для определения интервала вокруг измеренного значения величины, внутри которого с вероятностью Р = 0,95 находится истинное значение измеряемой величины.

4. Общие положения

4.1. Настоящие МУ устанавливают порядок организации и проведения, объем и периодичность радиационного контроля воды источников водоснабжения и питьевой воды, требования к аппаратурно-методическому обеспечению радиационного контроля, а также алгоритм выполнения санитарно-эпидемиологической оценки питьевой воды и рекомендации по проведению защитных мероприятий в необходимых случаях.

4.2. В качестве источников питьевого водоснабжения используется два типа природных вод:

- поверхностные (реки, озера, водохранилища);

- подземные (грунтовые, подрусловые, артезианские, трещинные воды кристаллических массивов).

4.3. Содержание радионуклидов в природных водах варьирует в очень широком диапазоне и зависит от состава вмещающих пород, локальных и региональных особенностей их геологического строения, типа вод, климатических условий и др.

Содержание природных радионуклидов в воде источников водоснабжения может повышаться в результате сбросов и выбросов производственных предприятий (горнодобывающей и перерабатывающей промышленности, цветной металлургии, угольной промышленности, предприятий по производству керамических изделий, минеральных удобрений и др.).

Содержание искусственных радионуклидов в воде источников водоснабжения может повышаться в результате радиационных аварий, а также сбросов и выбросов предприятий ядерной энергетики и др.

4.5. Требования по обеспечению радиационной безопасности населения при потреблении питьевой воды регламентированы НРБ-99/2009 и СП 2.6.1.1292-2003 и включают следующие основные положения:

4.6. При невыполнении условия (1) рассматривается вопрос о целесообразности разработки и осуществления защитных мероприятий с учетом принципа оптимизации. Обоснование характера вмешательства проводится в каждом конкретном случае на основании взвешивания пользы и вреда для здоровья населения с учетом результатов исследований воды используемых и альтернативных источников питьевого водоснабжения по совокупности показателей биологической, химической, радиационной безопасности и органолептических свойств, а также возможного ущерба в связи с прерыванием или ограничением водопотребления.

4.7. Если содержание природных радионуклидов в питьевой воде превышает уровни вмешательства более чем в 10 раз, то поиск и переход на альтернативный источник водоснабжения населения осуществляется в безотлагательном порядке. В исключительных случаях при отсутствии альтернативных источников питьевого водоснабжения решение вопроса о возможности использования таких источников водоснабжения принимается по согласованию с федеральным органом исполнительной власти, уполномоченным осуществлять государственный санитарно-эпидемиологический надзор, с учетом результатов оценки структуры облучения и суммарных доз облучения населения за счет всех природных источников ионизирующего излучения.

5. Требования к методам и средствам радиационного контроля

питьевой воды

5.1. Методики выполнения измерений, результаты которых используются для гигиенической оценки радиологических показателей питьевой воды, для целей радиационно-гигиенического мониторинга, а также при производственном контроле, должны быть в установленном порядке метрологически аттестованы.

5.2. Радиометрические установки, используемые для радиационного контроля питьевой воды, должны быть внесены в государственный реестр утвержденных типов средств измерений и иметь действующее свидетельство о госповерке. Контрольные меры активности, стандарты сравнения и изотопные индикаторы должны быть аттестованы в установленном порядке.

5.7. Рекомендуется использовать селективные (избирательные) методы прямого измерения контролируемых радионуклидов, предпочитая их косвенным и расчетным.

6. Определение соответствия питьевой воды требованиям

радиационной безопасности

6.3. Вода соответствует требованиям радиационной безопасности, если одновременно выполняются следующие условия:

6.4. При содержании радона в воде источника выше 60 Бк/кг необходимо проведение дальнейших исследований в соответствии с разделом 7 настоящих МУ.

6.5. Если превышено значение суммарной альфа- или бета-активности, то необходимо выполнить анализ содержания радионуклидов в воде.

6.6. В таблице 1 приведена рекомендуемая последовательность выполнения анализа радионуклидного состава воды в зависимости от измеренных значений удельной суммарной альфа- и бета-активности, позволяющая оптимизировать исследования при радиационном контроле воды. При формировании перечня контролируемых радионуклидов учитывались распространенность радионуклидов, их концентрация в воде и радиотоксикологические характеристики.

Таблица 1

РЕКОМЕНДУЕМАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ РАДИОНУКЛИДНОГО АНАЛИЗА

В ЗАВИСИМОСТИ ОТ ИЗМЕРЕННЫХ ЗНАЧЕНИЙ УДЕЛЬНОЙ СУММАРНОЙ

АЛЬФА- И БЕТА-АКТИВНОСТИ ВОДЫ

6.7. При полном радионуклидном анализе рекомендуется выполнять оценку соответствия удельной суммарной альфа-активности и суммы активностей радионуклидов по критерию:

Если условие (5) выполнено, то считается, что все основные дозообразующие альфа-излучающие радионуклиды, представленные в пробе, определены и дальнейшие исследования воды не требуются.

Таблица 2

6.8. Вода признается безусловно соответствующей требованиям радиационной безопасности, если:

6.9. При выполнении условия (6) для ведения производственного контроля за показателями радиационной безопасности воды рекомендуется установление контрольных уровней для конкретного источника питьевого водоснабжения по удельной суммарной альфа- и (или) бета-активности конкретного источника питьевого водоснабжения.

6.10. При невыполнении условия (6) проводятся дальнейшие исследования питьевой воды, включающие дополнительный отбор и радионуклидный анализ проб.

7. Оценка доз облучения населения за счет потребления

питьевой воды

При отсутствии достоверных данных о годовом потреблении питьевой воды расчеты допускается проводить исходя из данных стандартного потребления питьевой воды 730 кг в год.

По формуле (7) рассчитывается вклад всех природных радионуклидов в облучение населения за счет питьевой воды, кроме радона.

7.3. Критическим путем облучения населения за счет радона, содержащегося в питьевой воде, является переход его в воздух помещений и последующее ингаляционное поступление короткоживущих дочерних продуктов радона в организм.

Вклад питьевой воды в содержание радона в воздухе помещений ориентировочно можно оценить по скорости поступления радона в процессе дегазации воды:

7.4. При планировании защитных мероприятий за счет снижения концентрации радона в питьевой воде оценку среднего значения индивидуальной годовой эффективной дозы внутреннего облучения населения за счет радона в питьевой воде следует выполнять по формуле:

8. Обоснование решения о целесообразности проведения

защитных мероприятий

8.1. Основным критерием для принятия решения о необходимости разработки и осуществления мероприятий по снижению содержания радионуклидов в питьевой воде является удельная активность природных и техногенных радионуклидов.

8.2. Если для воды источника питьевого водоснабжения условие (6) выполняется, то меры по снижению содержания радионуклидов не требуются.

8.3. Если при совместном присутствии в воде действующих источников питьевого водоснабжения нескольких природных радионуклидов условие 6 превышено не более чем в 10 раз, то вода признается соответствующей требованиям радиационной безопасности при обязательном установлении производственного контроля за содержанием основных радионуклидов в воде. При этом рассматриваются возможные способы снижения удельной активности отдельных радионуклидов в воде и принимается решение о целесообразности осуществления защитных мероприятий, направленных на уменьшение содержания радионуклидов в питьевой воде.

При вводе в эксплуатацию новых источников питьевого водоснабжения населения необходимо предусмотреть, чтобы в питьевой воде, поступающей водопотребителям, выполнялось условие (6).

8.4. Если при совместном присутствии в воде действующих источников питьевого водоснабжения нескольких природных радионуклидов условие 6 превышено более чем в 10 раз, то вопрос об использовании ее для питьевого водоснабжения населения в каждом конкретном случае решается на основании санитарно- эпидемиологического заключения Федерального органа исполнительной власти, уполномоченного осуществлять государственный санитарно-эпидемиологический надзор. Одновременно утверждается план мероприятий по обеспечению качества воды, соответствующей гигиеническим нормативам, включая календарный план работ, сроки их выполнения и объемы финансирования.

8.5. Исключен. - Изменение N 1, утв. Роспотребнадзором 04.08.2010.

8.6. При принятии решения о проведении защитных мероприятий следует учитывать возможные негативные социальные и экономические последствия:

- прерывание или ограничение водопользования может оказать неблагоприятное воздействие на здоровье и психологическое состояние населения;

- ограничение эксплуатации межпластовых, защищенных от микробного загрязнения вод, как правило, увеличивает расходы на эксплуатацию систем питьевого водоснабжения за счет необходимости обеззараживания воды;

- применение при очистке воды двух и более установок для ее обработки снижает санитарную надежность водопровода;

- обработка больших количеств воды требует значительных экономических затрат и может быть затруднительна технически;

- возможны проблемы в связи с образованием и необходимостью последующей утилизации отходов с повышенным содержанием природных радионуклидов (отработавшие свой ресурс материалы и оборудование, регенерационные и обратные воды);

- при использовании некоторых технологий очистки воды происходит значительное изменение ее минерального состава, что может повлечь за собой снижение "физиологической полноценности" питьевой воды, увеличение ее коррозионной активности и другое, в связи с чем может возникнуть необходимость коррекции минерального состава воды.

8.7. Программы защитных мероприятий должны разрабатываться с учетом принципов обоснования и оптимизации вмешательства на основе взвешивания пользы и вреда от планируемого вмешательства. Ожидаемые негативные социальные и экономические последствия планируемых защитных мероприятий должны быть минимальными.

8.8. При планировании и осуществлении защитных мероприятий необходимо выполнение следующих условий:

- принимаемые меры по возможности не должны приводить к существенному ограничению водопользования населения;

- качество воды в эпидемиологическом отношении, по химическому составу и другим гигиенически значимым показателям не должно ухудшаться.

8.9. Факторами, определяющими характер и сроки проведения защитных мероприятий, являются:

- происхождение загрязнения: техногенное или природное. В случае загрязнения источника водоснабжения техногенными радионуклидами выше уровней вмешательства защитные мероприятия проводятся обязательно, независимо от наличия других факторов. При этом источник воды должен быть исключен из водоснабжения населения, а если содержание техногенных радионуклидов в воде не превышает соответствующих уровней вмешательства, то защитные мероприятия должны быть направлены на ограничение интенсивности или ликвидацию путей поступления техногенного загрязнения в питьевую воду;

- степень превышения норматива: если удельные активности природных радионуклидов в питьевой воде превышают соответствующие уровни вмешательства более чем в 10 раз, мероприятия по снижению содержания радионуклидов в воде проводятся обязательно, независимо от наличия других факторов;

- количество ежедневно поставляемой воды, численность населения, потребляющего воду, и дозы его облучения за счет потребления питьевой воды, использование воды в производстве пищевых продуктов;

- возможность обеспечения населения водой гарантированного качества (замена используемого источника альтернативным, снижение содержания радионуклидов путем смешивания воды различных водозаборов, коррекция технологии водоподготовки и т.п.);

- при обосновании защитных мероприятий в отношении воды источников водоснабжения с повышенным содержанием радона должны учитываться не только уровни перорального и ингаляционного облучения при использовании данной системы водоснабжения, но и дозы, получаемые за счет других источников радона в жилище. Выбор оптимального варианта таких мероприятий целесообразно проводить с учетом доз облучения населения от всех источников поступления радона в дома.

Примечания:

1. Чем больше численность потребляющего воду населения, а также дозы его облучения за счет потребления питьевой воды, тем более оперативными должны быть меры по нормализации ее радиологических показателей.

2. При обосновании защитных мероприятий в отношении воды источников водоснабжения с повышенным содержанием урана следует учитывать, что порог вредного воздействия на организм урана вследствие его химической токсичности ниже, чем уровень его действия как альфа-излучателя. Согласно дополнению 3 к ГН 2.1.5.689-98 "Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования" (ГН 2.1.5.1093-02) ПДК урана по санитарно-токсикологическому признаку вредности равна 0,1 мг/л. Расчетная активность для урана-238, основанная на этом предельном значении, составляет примерно 1,23 Бк/л (Моисеев А.А., Иванов В.И. Справочник по дозиметрии и радиационной гигиене: Энергоатомиздат, 1990).

8.10. В зависимости от конкретных условий защитные мероприятия по снижению облучения населения за счет природных источников могут быть направлены на снижение их облучения за счет тех источников, воздействие на которые может привести к максимальному эффекту при минимальных материальных затратах.

8.11. Контроль за показателями радиационной безопасности и мероприятия по снижению радиоактивности воды из частных источников питьевого водоснабжения проводят их владельцы.

По результатам контроля владелец источника водоснабжения должен быть проинформирован о качестве питьевой воды по показателям радиационной безопасности и возможных последствиях ее использования для питьевых целей.

8.12. Если качество воды может представлять потенциальную опасность для здоровья людей, население информируется в установленном порядке о рекомендациях по действиям в данной ситуации (использование индивидуальных фильтров, кипячение воды, проветривание помещений и т.п.).

8.13. На проекты защитных мероприятий по снижению облучения населения за счет содержания радионуклидов в питьевой воде, а также на технические средства снижения содержания радионуклидов в питьевой воде должны быть оформлены в установленном порядке санитарно-эпидемиологические заключения органов, осуществляющих госсанэпиднадзор, о соответствии их требованиям санитарных правил и гигиенических нормативов.

9. Производственный радиационный контроль

9.1. Производственный радиационный контроль питьевой воды обеспечивается организацией, осуществляющей водоснабжение населения, по программе, согласованной с территориальным органом, осуществляющим госсанэпиднадзор.

9.2. Перечень контролируемых показателей, количество и периодичность отбора проб питьевой воды для постоянного производственного контроля определяются для каждой системы водоснабжения на основании результатов ежеквартального радиационного контроля воды в течение одного года.

9.3. В дальнейшем производственный контроль осуществляется не реже 1 раза в год.

9.3.1. При выполнении условия (6) контроль осуществляется по показателям удельной суммарной альфа- и бета-активности, а для подземных источников и по содержанию радона. При этом, если значения показателей удельной суммарной альфа- и/или бета-активности превышают значения 0,2 и 1,0 Бк/кг, соответственно, то рекомендуется установление контрольных уровней по данным показателям".

9.3.2. Контроль содержания отдельных радионуклидов в воде проводится в случаях превышения установленных контрольных уровней или при невыполнении условия (6). При этом допускается определять только те радионуклиды, вклад которых в условие (6) составляет 80% и более.

9.4 - 9.5. Исключены. - Изменение N 1, утв. Роспотребнадзором 04.08.2010.

9.6. При проведении радиационного контроля питьевой воды выполняются следующие основные процедуры:

- отбор проб;

- приготовление счетных образцов;

- измерение общей альфа- и бета-активности;

- идентификация радионуклидов, измерение их индивидуальных концентраций;

- расчет результатов измерений и погрешностей исследований;

- гигиеническая оценка питьевой воды по критериям радиационной безопасности.

9.7. Отбор, консервацию, хранение и транспортирование проб питьевой воды для радиационного контроля производят по ГОСТ Р 51592-00 "Вода. Общие требования к отбору проб" и ГОСТ Р 51593-00 "Вода питьевая. Отбор проб", а также в соответствии с требованиями стандартов и других действующих нормативных документов на методы определения конкретного показателя, утвержденных в установленном порядке.

9.8. На станциях водоснабжения, осуществляющих забор воды из артезианских источников, кроме производственного контроля содержания радионуклидов в воде проводится радиационный контроль в местах размещения фильтров-очистителей, отстойников, аэраторов и прочего по мощности дозы гамма-излучения, а также воздуха рабочих помещений по содержанию изотопов радона и их дочерних продуктов в воздухе.

Программа контроля устанавливается в зависимости от объема подготавливаемой воды и содержания радионуклидов в ней. Оценка результатов контроля проводится в соответствии с СП 2.6.1.1292-03.

9.9. Лаборатории, осуществляющие радиационный контроль питьевой воды, должны быть аккредитованы в установленном порядке в соответствующих областях измерений.

Приложение 1

СХЕМА

РАДИАЦИОННОГО КОНТРОЛЯ И САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКОЙ

ОЦЕНКИ ПРИГОДНОСТИ ВОДЫ ДЛЯ ПИТЬЕВЫХ ЦЕЛЕЙ ПО ПОКАЗАТЕЛЯМ

РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

Приложение 2

УРОВНИ ВМЕШАТЕЛЬСТВА (УВ)

ПО УДЕЛЬНОЙ АКТИВНОСТИ РАДИОНУКЛИДОВ В ПИТЬЕВОЙ ВОДЕ

(ИЗВЛЕЧЕНИЕ ИЗ ПРИЛОЖЕНИЯ 2А К НРБ-99/2009)

Приложение 3а

ДОЗОВЫЕ КОЭФФИЦИЕНТЫ

ДЛЯ ОТДЕЛЬНЫХ РАДИОНУКЛИДОВ РЯДОВ УРАНА И ТОРИЯ

ПРИ ПОСТУПЛЕНИИ В ОРГАНИЗМ ВЗРОСЛЫХ ЛЮДЕЙ С ВОДОЙ, МЗВ/БК

Таблица 1.1

--------------------------------

<*> Численные значения дозовых коэффициентов для остальных радионуклидов семейства меньше минимального из приведенных в таблице в 10 и более раз.

Таблица 1.2

Приложение 3б

ДОЗОВЫЕ КОЭФФИЦИЕНТЫ

ДЛЯ ОТДЕЛЬНЫХ РАДИОНУКЛИДОВ РЯДОВ УРАНА И ТОРИЯ ПРИ ИХ

ПЕРОРАЛЬНОМ ПОСТУПЛЕНИИ В ОРГАНИЗМ КРИТИЧЕСКОЙ

ГРУППЫ, ЗВ/БК

Таблица 1

--------------------------------

<*> Численные значения дозовых коэффициентов для остальных радионуклидов семейства меньше минимального из приведенных в таблице в 10 и более раз.

Таблица 2

Приложение 4

(справочное)

РЕКОМЕНДУЕМЫЕ МЕТОДЫ

ДЛЯ РАДИАЦИОННОГО КОНТРОЛЯ ПИТЬЕВОЙ ВОДЫ

Приложение 5

(справочное)

ПЕРЕЧЕНЬ

МЕТОДИК, ИСПОЛЬЗУЕМЫХ ПРИ РАДИАЦИОННОМ КОНТРОЛЕ

ПИТЬЕВОЙ ВОДЫ

1. Отбор и подготовка проб питьевой воды для определения показателей радиационной безопасности. Методические рекомендации, утв. Роспотребнадзором от 27.12.2007 N 0100/13609-07-34.

2. ГОСТ Р 51730-2001. Вода питьевая. Метод определения суммарной удельной активности радионуклидов.

3. ИСО 9696-2007. Качество воды. Измерение общей альфа-активности в неминерализованной воде. Метод с применением концентрированного источника.

4. ИСО 9697-2008. Качество воды. Измерение общей бета-активности в неминерализованной воде. Метод с применением концентрированного источника.

5. Суммарная активность альфа- и бета-излучающих радионуклидов в природных водах (пресных и минерализованных). Подготовка проб и измерения. Методические рекомендации. Москва, ВИМС, 2009. Утв. ЦМИИ ФГУП ВНИИФТРИ Ростехрегулирование, 2009.

6. Методика выполнения измерений объемной активности полония-210 и свинца-210 в природных водах альфа-, бета-радиометрическим методом с радиохимической подготовкой. Свидетельство ЦМИИ ГНМЦ ВНИИФТРИ Госстандарта РФ N 49090.3Н618 от 18.12.2003; Свидетельство НСАМ N 396-ЯФ, Москва, ВИМС, 2001 - 2003.

7. Методика выполнения измерений объемной активности изотопов урана (234, 238) в природных водах с минерализацией до 5 г/куб. дм альфа-спектрометрическим методом с радиохимической подготовкой. Свидетельство ЦМИИ ГНМЦ ВНИИФТРИ Госстандарта РФ 49090.3Н628 от 18.12.2003; Свидетельство НСАМ 381-ЯФ, Москва, ВИМС, 2003.

8. Методика выполнения измерений объемной активности изотопов радия (226, 228) в пробах природных вод с минерализацией до 5 г/куб. дм альфа-, бета-радиометрическим методом с радиохимической подготовкой. Свидетельство ЦМИИ ГНМЦ ВНИИФТРИ Госстандарта РФ N 40090.6Б327 от 28.02.2006, Москва, ВИМС, 2000.

10. Методика выполнения измерений. Удельная активность радона-222 в воде. Свидетельство ФГУП "ВНИИМ им. Д.И. Менделеева" Федерального государственного агентства по техническому регулированию и метрологии N 1058/07 от 18.10.2007.

11. Методика радиохимического приготовления счетных образцов из проб питьевой воды для измерения активности Ро-210, общей альфа-активности (без Ро-210) и общей бета-активности (без К-40) на радиологическом комплексе с программным обеспечением "Прогресс". Свидетельство об аттестации методики ФГУП ВНИИФТРИ N 42090.6В525 от 27.03.2006.

12. Методика приготовления счетных образцов из проб питьевой воды для измерения активности ЕРН с использованием радиологического комплекса с программным обеспечением "Прогресс". Свидетельство об аттестации методики ФГУП ВНИИФТРИ N 42090.6В524 от 27.03.2006.

13. Методика выполнения измерений объемной активности изотопов тория (232, 230, 228) в природных водах с минерализацией до 5 г/куб. дм альфа-спектрометрическим методом с радиохимической подготовкой. Свидетельство ЦМИИ ГНМЦ ВНИИФТРИ Госстандарта РФ N 49090.3Н625 от 18.12.2003; Свидетельство НСАМ N 461-ЯФ, Москва, ФГУП ВИМС, 2003.

14. Методика выполнения измерений объемной активности изотопов плутония (239 + 240, 238) в природных водах с минерализацией до 5 г/куб. дм альфа-спектрометрическим методом с радиохимической подготовкой. Свидетельство ЦМИИ ГНМЦ ВНИИФТРИ Госстандарта РФ N 49090.3Н622 от 18.12.2003; Свидетельство НСАМ N 407-ЯФ, Москва, ВИМС, 1999.

Приложение 6

(справочное)

СПОСОБЫ И МЕТОДЫ

СНИЖЕНИЯ УРОВНЕЙ ПРИРОДНЫХ РАДИОНУКЛИДОВ В ПИТЬЕВОЙ ВОДЕ

6.1. В случаях обоснования целесообразности разработки и осуществления защитных мероприятий для каждой системы водоснабжения должны быть определены оптимальные профилактические меры. При этом учитывают следующие факторы: качество исходной воды и требуемые параметры обработанной воды, сложности в монтаже и работе оборудования, стоимость альтернативных мероприятий.

6.2. Возможными защитными мероприятиями являются:

- организация водоснабжения за счет альтернативного источника;

- смешение воды из различных источников (подготовленной поверхностной или подземной воды с меньшим количеством радионуклидов из другого геологического горизонта).

Преимуществом данных методов является отсутствие дополнительных проблем, связанных с утилизацией отходов.

6.3. В случаях, когда невозможно использовать варианты, указанные в п. 6.2, для улучшения качества воды применяют методы очистки воды от радионуклидов: физические (дистилляция, дегазация), химические (реагентные, ионного обмена), мембранные, электрохимические и комбинированные.

В результате обработки воды могут образовываться отходы с повышенным содержанием радионуклидов.

6.4. Как стабильные, так и радиоактивные вещества могут находиться в различных формах (ионной, молекулярной) и, следовательно, в виде различных растворов (истинных, коллоидных) или во взвешенном состоянии. Выбор метода очистки воды в значительной мере зависит от ее радионуклидного состава, уровней активности и формы, в которой находятся основные дозообразующие радионуклиды.

Приоритетными способами удаления радионуклидов из воды являются:

для урана - ионный обмен, мембранные методы (нанофильтрационные и обратноосмотические);

для радия - ионный обмен, мембранные методы (нанофильтрационные и обратноосмотические);

для свинца и полония - ионный обмен, мембранные методы (нанофильтрационные и обратноосмотические), угольная фильтрация.

Эффективность существующего оборудования для обезжелезивания воды изменяется в диапазоне для радона от 0 до 90%, для изотопов урана, радия, свинца и полония от 0 до 100% в зависимости от применяемого метода.

6.5. Из числа применяемых наиболее простые и обычно наиболее экономичные - осадительные методы, широко используемые в практике водоподготовки. Радионуклиды можно удалить путем прямого осаждения, соосаждения или адсорбции на получающемся осадке.

Осаждение. При изменении pH (нейтрализация: кислые - известью, щелочные - кислотами) концентрации большинства растворенных примесей уменьшаются в сотни и тысячи раз.

Коагуляция. Вещества, находящиеся в воде в коллоидном состоянии (гидрозоли), под влиянием коагулянта образуют хлопья и выпадают в осадок (гидрогели), механически увлекая за собой крупную взвесь. Одновременно образующиеся хлопья коагулянта адсорбируют на своей поверхности и увлекают на дно коллоидные и тонкодиспергированные частицы, т.е. обеспечивают удаление примесей путем их адсорбции и соосаждения. Наиболее эффективны процессы коагуляции в щелочной среде. В качестве коагулянтов используют гидроокись алюминия, железа, фосфаты с известью, дубильную кислоту или танин с известью и др.

Поскольку различные радионуклиды находятся в различных формах, эффективность их удаления посредством данного метода далеко не однозначна. Например, при использовании в качестве коагулянта гидроокиси алюминия или железа можно эффективно удалить все катионы, за исключением щелочных и щелочноземельных металлов, анионы же удаляются лишь в небольшой степени.

Коагуляция и отстаивание применяются на практике в сочетании с фильтрацией через песчаные фильтры, которые используют исключительно для механической задержки взвешенных частиц, не успевших осесть в отстойниках. Небольшая сорбционная емкость этих устройств исключает возможность использования их как самостоятельных очистных агрегатов.

Эффективность очистки с применением метода коагуляции и отстаивания для разных растворов составляет от 0% до 90%. Рассмотренные методы можно применять для обработки относительно больших объемов воды с низкими уровнями радиоактивности, которые требуется уменьшить примерно вдвое.

Преимуществом осадительных методов очистки воды кроме экономичности является их универсальность, т.е. способность обезвреживать воду с содержанием разнообразных примесей (механических, химических) и различного радионуклидного состава. Недостаток данных методов - образование значительного количества активных шламов (преимущественно в виде осадков), нуждающихся в дополнительной обработке, последующем удалении и захоронении.

Другим перспективным методом безреагентной очистки является электрокоагуляция. Принцип данного метода основан на свойствах металлического (алюминиевого) анода под действием постоянного тока переходить в очищаемую воду, образовывая в ней хлопья гидроокиси алюминия, сорбирующие на поверхности находящиеся в воде примеси и увлекающие их на дно. Большим преимуществом его является малое количество образующихся шламов.

6.7. Ионный обмен. Данный метод базируется на способности некоторых материалов (ионитов) вследствие обмена ионов извлекать из растворов находящиеся в них катионы, анионы (или и те и другие одновременно) как стабильных, так и радиоактивных нуклидов. Цикл очистки воды с помощью ионитов состоит из последовательно проводимых операций фильтрования и регенерации.

В качестве ионитов в настоящее время используют органические и неорганические соединения. Из органических наиболее широко применяются синтетические смолы (катиониты и аниониты) различных марок, сульфоуголь, цеолиты и др.

Основные технологические требования к ионитам сводятся к следующему: хорошая рабочая ионообменная способность, возможно большая скорость ионообмена, легкость регенерации с использованием малого объема промывной жидкости, ограниченная набухаемость и невысокое гидравлическое сопротивление при рабочей скорости фильтрации, устойчивость к механическим (истиранию), химическим (кислоты, щелочи, окислители) и температурным воздействиям. Иониты не должны окрашивать воду, придавать воде запах, привкус, мутность, изменять pH за пределы 6,5 - 8,5, выделять в воду вредные для здоровья вещества, увеличивать содержание в очищаемой воде микроорганизмов.

При проектировании ионообменных установок учитывают все эти факторы и в необходимых случаях экспериментально определяют оптимальные технологии сорбции-десорбции.

Высокая эффективность метода ионного обмена, полная возможность использования его при любом объеме вод позволяют его считать одним из наиболее перспективных для очистки воды от радионуклидов.

Сильноосновные аниониты в форме хлорида удаляют более чем 95% урана независимо от качества сырой воды. Эффективность удаления радия в системах, содержащих сильнокислые катиониты в форме натрия, составляет 90 - 95%.

Эффективность удаления свинца и полония изменяется в широком диапазоне (35 - 100%). Механизм удаления этих нуклидов - только частично ионный обмен. Большая часть этих нуклидов в естественных водах находится в виде коллоидных частиц и их уменьшение связывают с адсорбцией на ионообменных смолах.

Вместе с тем все системы на основе ионного обмена имеют и ряд общих недостатков:

Процессы ионного обмена не являются специфическими для радиоактивных веществ и наряду с радиоактивными на ионообменных материалах задерживаются стабильные нуклиды. Это обстоятельство существенно влияет на эффективность очистки, которая в значительной степени зависит от присутствия в водах стабильных форм химических элементов, от нуклидов которых надо освободиться.

На эффективность работы ионообменных фильтров, независимо от их конструкции (колонки, пластины), могут существенно влиять различные примеси, содержащиеся в водах (взвешенные вещества, мыла, масла и др.). Эти примеси, заполняя поры фильтров или обволакивая поверхность ионообменного материала, по существу препятствуют процессу фильтрации и ионообмена. Наличие в воде природных органических веществ (в том числе и органического железа) также может ухудшать фильтрационные и ионообменные свойства ионитов, "зарастанию" смолы органической пленкой, которая одновременно служит питательной средой для бактерий. Оба этих фактора требуют более частой регенерации, что приводит к увеличению расхода соли.

В процессе эксплуатации ионообменные фильтры накапливают радиоактивные вещества. В результате содержание природных радионуклидов в отработавших свой ресурс патронах может достигать 100 Бк/г. При регенерации фиксированные ионообменным фильтром радионуклиды переходят в растворы, активность которых превышает активность необработанных вод в 10 - 30 раз. Образование отходов с повышенным содержанием природных радионуклидов может ограничить применимость этой технологии для частных домов.

Необходимо отметить также, при ионировании воды на анионообменных смолах одновременно с извлечением радионуклидов уменьшается мутность воды, удаляются фосфаты, сульфаты, нитраты. При фильтровании воды через катионообменные смолы сокращается содержание железа и марганца, кальция, магния, сульфатов, хлоридов. Более или менее полное удаление общей жесткости отрицательно оценивается с точки зрения влияния на здоровье и приводит к увеличению коррозионной активности воды. Этого можно избежать, используя вместо смол в натриевых формах смолы в форме кальция.

Тем не менее, именно применение ионообменных смол представляется наиболее перспективным направлением в деле борьбы с радионуклидами в воде. Задача заключается в том, чтобы подобрать такую комбинацию ионообменных смол (подчас весьма сложную и многокомпонентную), которая была бы эффективна в достаточно широких пределах параметров качества воды.

6.8. Мембранные методы. Среди методов водоочистки особое место занимают высокотехнологичные и эффективные мембранные технологии. Принцип их работы состоит в пропускании исходной воды под давлением через полупроницаемую мембрану, которая разделяет воду на два нигде не соприкасающихся потока: фильтрат (очищенная вода) и концентрат (сконцентрированный раствор примесей).

Мембрана представляет собой микропористый материал. Размер задерживаемых примесей определяется размером пор мембраны. Все примеси, превосходящие по размеру поры мембраны, удаляются в одну стадию. Различают четыре типа мембран:

- микрофильтрационные (MF);

- ультрафильтрационные (UF);

- нанофильтрационные (NF);

- обратноосмотические (RO).

RO-мембраны являются самыми селективными. Они задерживают 97 - 99% всех растворенных веществ. UF-мембраны задерживают только крупные органические молекулы (молекулярный вес больше 10000), коллоидные частицы, микроорганизмы. NF-мембраны занимают промежуточное между RO и UF положение. Они пропускают 15 - 90% солей в зависимости от структуры мембраны. MF-мембраны являются самыми грубыми среди перечисленных типов. Они задерживают только взвешенные и высокомолекулярные частицы, превышающие 0,1 мкм.

Основным критерием для выбора мембранной технологии являются требования к качеству очищенной воды. RO-системы используются, когда необходимо удалить неорганические соли и большинство примесей; NF-системы применяются, когда нужно снизить содержание неорганических солей лишь частично; UF-системы используются, когда необходимо удалить только высокомолекулярные органические соединения и взвеси. MF применяют в основном на этапе предварительной очистки.

Большинство NF- и RO-систем одинаково способны удалять свыше 90% радиоактивных урана, радия, свинца и полония.

Преимуществами мембранных технологий водоподготовки помимо степени очистки воды являются низкие энергозатраты, отсутствие химических реагентов, работа в автоматическом режиме, простота эксплуатации и обслуживания, компактность.

Недостатками мембранных методов являются:

- низкая минерализация очищенной воды и пониженное значение pH;

- в некоторых случаях образование отходов с повышенным содержанием природных радионуклидов (отработанные мембраны, обратные воды).

Кроме того, практическое применение мембран ограничено следующими факторами:

- мембраны даже в большей степени, чем гранулированные фильтрующие среды и ионообменные смолы, критичны к "зарастанию" органикой и забиванию поверхности нерастворимыми частицами. Это означает, что мембранные системы требуют достаточно тщательной предварительной подготовки воды, в частности - удаления взвесей и органики;

- высокая стоимость. Их применение рентабельно только там, где требуется очень высокое качество воды (например, в пищевой и фармацевтической промышленности, медицине, производстве вооружений, космических исследованиях).

6.9. Дистилляция, перегонка, разделение жидких смесей на отличающиеся по составу фракции. Процесс основан на различии температур кипения компонентов смеси. Дистилляция производится с целью освобождения жидкости от взвешенных в ней примесей или для выделения более летучих частей.

В зависимости от физических свойств компонентов разделяемых жидких смесей применяют различные способы дистилляции (простая, фракционная, равновесная, молекулярная). Простая дистилляция проводится частичным испарением кипящей жидкой смеси, непрерывным отводом и последующей конденсацией образовавшихся паров. При этом механические частицы, содержащиеся в воде (включая бактерии, вирусы, а также коллоиды и взвешенные частицы), оказываются слишком тяжелыми, чтобы быть подхваченными паром. Одновременно почти все растворенные в воде химические вещества (включая соли железа, других тяжелых металлов, соли жесткости, радионуклиды и т.д.) достигают предела своей растворимости (за счет повышенной температуры и увеличения концентрации) и выпадают в осадок.

Дистиллированную воду достаточно широко используют в промышленности, медицине, в химических лабораториях. В быту же дистилляторы не нашли широкого применения по следующим причинам:

- бытовые дистилляторы имеют малую производительность (около 1 л/ч);

- в бойлере дистиллятора постоянно образуются осадок, накипь и т.п., которые необходимо регулярно удалять;

- дистилляторы излучают тепло и в довольно значительных количествах;

- дистилляторы потребляют значительное количество электроэнергии, что для многих применений делает их использование менее рентабельным, чем обратный осмос или деминерализация на ионообменных смолах.

Приложение 7

(справочное)

СПОСОБЫ И МЕТОДЫ УДАЛЕНИЯ РАДОНА ИЗ ПИТЬЕВОЙ ВОДЫ

7.1. Для удаления радона из воды применяют следующие основные методы: отстаивание, аэрация, фильтрование воды через активированный уголь.

7.2. Аэрация. Наиболее часто применяемым эффективным методом удаления радона является аэрация воды перед подачей в водопроводную сеть (более 95%).

Выбор системы для удаления радона, основанной на аэрации, зависит от ряда факторов:

- среднего водопотребления;

- максимального мгновенного потребления воды;

- концентрации радона в необработанной воде;

- потребности в очищенной воде;

- необходимости установки дополнительного оборудования обработки;

- требований к помещению, где проводится очистка воды;

- обслуживания системы.

Аэрация может проводиться свободным изливом, фонтанированием (брызгальные установки), душированием, с помощью водовоздушного инжектора (труба Вентури) или компрессора.

Первые три способа аэрации используются, как правило, на муниципальных станциях очистки различной производительности. Их недостаток - повышенная влажность около установки, необходимость повысительного насосного оборудования и обеззараживания из-за возможности микробиологического загрязнения аэрированной воды. Поэтому больший интерес вызывает аэрация с помощью водовоздушных инжекторов и компрессоров (барботаж). Для устойчивой работы инжектора необходим достаточно высокий расход воды через него при перепаде давления около трех атмосфер. Основной недостаток этого способа аэрации - значительное гидравлическое сопротивление, создаваемое инжектором.

При аэрации воды одновременно с радоном удаляются углекислота (67 - 99%), сероводород и другие газы, снижаются концентрации железа и марганца. Вода насыщается кислородом, что улучшает ее вкус и уменьшает коррозионную активность воды.

Другие параметры воды изменяются незначительно. Физико-химические свойства и микробиологические показатели воды остаются хорошими.

7.3. Угольные фильтры. Фильтрование через активированный уголь можно считать недорогим и легким способом снижения содержания радона в питьевой воде. Активированный уголь уже давно применяется в водоочистке для улучшения органолептических показателей качества воды (устранения постороннего привкуса, запаха, цветности). Благодаря своей высокой адсорбционной способности активированный уголь эффективно поглощает остаточный хлор, растворенные газы, органические соединения. Фильтр на основе качественного активированного угля способен удалить до 99,7% радона. Со временем этот показатель падает до 79%. Причиной снижения степени адсорбции радона, кроме снижения сорбционной емкости угольного фильтра может быть наличие в воде органических веществ и высоких концентраций урана. Засыпка фильтров из активированного угля требует периодической замены. Использование перед угольным фильтром умягчителей воды на ионообменных смолах позволяет удалить уран и одновременно повысить эффективность сорбции до 85%. Для борьбы с биологическим зарастанием применяют также специальные угли с бактериостатическими присадками.

В настоящее время для увеличения ресурса работы применяют активированный уголь из скорлупы кокоса, адсорбционная способность которого в 4 раза выше, чем угля, получаемого традиционными методами (например, из древесины березы).

Следует иметь в виду, что наряду с радоном фильтры способны адсорбировать различные количества урана, радия и продуктов распада радона. Поскольку дочерние продукты распада радона могут накапливаться на фильтре, фильтр при определенных условиях становится источником гамма-излучения. Мощность дозы на поверхности постоянно используемого фильтра и вблизи него зависит от концентрации радона в необработанной воде, ежедневного водопотребления, объема фильтра и может достигать нескольких мкЗв/ч (до 100 мкЗв/ч).

В местах размещения фильтров необходимо организовать радиационный контроль по мощности дозы гамма-излучения, также следует определить порядок обращения с отработавшими свой ресурс фильтрами.

Учитывая увеличение мощности дозы на поверхности и вблизи постоянно используемого фильтра, применение данного метода целесообразно только в случае невысоких концентраций радона в исходной воде.

Еще документы: